Univerza *v Ljubljani* 



### Machine Perception Recognition 2 & object detection

Matej Kristan



Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani





# Is detection/recognition really that difficult?

- A simple classifier: Comparison of a candidate patch to a template
- I.e.,  $\sum_{i} (I_i T_i) > \theta$  (is the dot product sufficiently large?)

Template: A chair





Output of the classifier evaluation.



*Not really?!* 

Slide credit: A. Torralba 2

# Is detection/recognition really that difficult?

Analyze this!







Completely useless – does not work at all.

Main issue: Poor representation - Feature space!

## **Challenges of feature construction**



Illumination



Occlusion



Within-class variability



Aspect





Object pose



## How to come up with features?

1. Natural coordinate systems:

For some applications, it is enough just to linearly transform the input data. PCA/LDA

- 2. Handcrafted nonlinear transforms:
- 3. Feature selection:

Machine learning to select optimal features from a pool of several handcrafted transforms.

4. End-to-end learning of feature transform:

Have machine learn entire feature extraction and selection pipeline.

Machine Perception

## HANDCRAFTED NONLINEAR TRANSFORMS

- Require a representation that:
  - Accounts for intra-class variation
  - Distinguishes between different classes



• Problem: Color or gray-level representation is sensitive to illumination changes or within-class color variations.





- Solution: Edges, contours and oriented intensity gradients
- Change intensity to gradient-based features





• Global descriptor: Templates vs Histograms



- Templates: often too specific not robust to local deformations
- Histograms: robust to local deformations, but not enough specific

## **Gradient-based representation**

• Edges, contours and oriented intensity gradients



- Encode local gradient distributions using histograms
  - Locally unordered: invariant to small shifts and rotations
  - Contrast normalization: addresses non-uniform illumination and varying intensity.

# **Gradient-based representation: HOG**



Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005





#### Calculate hog in $8 \times 8$ blocks and normalize



- Histogram of gradient orientations
  - Weighted by magnitude
  - Similar to SIFT

#### HOG descriptor



# **Practical approach to learning a detector**



## Lots of choices for a classifier







Viola, Jones 2001, Torralba et al. 2004, Opelt et al. 2006,...



## **Consider a linear classifier**



Learning = Choosing *w* and *b*!

A decision boundary, in general, a *hyper-plane*:

$$ax_1 + cx_2 + b = 0$$

Define:



A general hyper-plane eq:  $\mathbf{w}^T \mathbf{x} + b = 0$ 

Classification of x = sign checking:

 $f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T\mathbf{x}_i + \mathbf{b})$ 

## **Best separation hyper-plane?**



A general hyper-plane eq:  $\mathbf{w}^T \mathbf{x} + b = 0$ 

Classification of x = sign checking:

 $f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T\mathbf{x} + \mathbf{b})$ 

Choosing *w* and *b*?

# **Best separation hyper-plane?**



A general hyper-plane eq:  $\mathbf{w}^T \mathbf{x} + b = 0$ 

Classification of x = sign checking:

 $f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T\mathbf{x} + \mathbf{b})$ 

• The hyper-plane that maximizes the margin between positive  $(y_i = 1)$  and negative  $(y_i = -1)$  training examples.

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

Have to select SVs and learn  $\alpha_i$ s!

# **Application: Pedestrian detection**

- Sliding window:
- 1. extract HOG at each displacement
- 2. classify by a linear SVM





HOG cells weighted by the positive support vectors



**HOG cells** weighted by the negative support vectors

Dalal and Triggs, Histograms of oriented gradients for human detection, CVPR2005

### **Pedestrian detection HoG+SVM**



Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

# **Time/computation criticality**

- A lot of applications are time- and resources-critical
- Require efficient feature construction
- Require efficient classification
- A case study: Face detection



# How to come up with features?

1. Natural coordinate systems:

For some applications, it is enough just to linearly transform the input data. PCA/LDA

2. Handcrafted nonlinear transforms:

Nonlinear transforms improve feature robustness. HOG

3. Feature selection:

Machine learning to select optimal features from a pool of several handcrafted transforms.

4. End-to-end learning of feature transform:

Have machine learn entire feature extraction and selection pipeline.

Machine Perception

## **LEARNING FEATURES BY FEATURE SELECTION**

Application specifics:

- Frontal faces are a good example, where the global appearance model + sliding window works well:
  - Regular 2D structure
  - Central part of the face is well approximated by rectangle.



## **Fast face detection**

- To apply in real-time applications
  - 1. Feature extraction should be fast
  - 2. Classifier application should be fast
- These points addressed next



# **Choosing the right classifier**



Berg, Berg, Malik 2005...



#### Support Vector Machines



Guyon, Vapnik Heisele, Serre, Poggio, 2001,...



Torralba et al. 2004, Opelt et al. 2006,...



# **Boosting**

- Build a strong classifier from a combination of many "weak classifiers" weak learners (each at least better than random)
- Flexible choice of weak learners
  - This includes fast but inaccurate classifiers!

- We'll have a look at the AdaBoost (Freund & Schapire)
  - Simple to implement.
  - Basis for the popular Viola-Jones face detector.

Y. Freund and R. Schapire, <u>A short introduction to boosting</u>, *Journal of Japanese Society for Artificial Intelligence*, 14(5):771-780, 1999.

## **AdaBoost: Intuition**

• Task: Build a classifier which is a weighted sum of many classifiers





Example of a weak classifier:

$$h_t(x) = \begin{cases} +1 & \text{if } f_t(x) > \theta_t \\ -1 & \text{otherwise} \end{cases}$$



### **AdaBoost: Intuition**







. . .

- Train a sequence of weak classifiers.
- Each weak classifier splits training examples with at least 50% accuracy.
- Those examples that are incorrectly classified by the weak classifier, get more weight in training the next weak classifier.

The final classifier is a combination of many weak classifiers!

$$h(x) = \operatorname{sgn}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

# **Face detection**

- To apply in real-time applications
  - 1. Feature extraction should be fast

(? How to calculate fast/strong features ?)

 Classifier application should be fast (weak classifiers = fast evaluation)





Viola, Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features", CVPR2001

# **Computing features**

Simple rectangular filters as feature extractors (feature defined by filter type and position)



# **Computing features**

Simple rectangular filters as feature extractors



 $f_1(x)$ 





Require evaluation at many displacements and multiple scales! Possible to evaluate such a simple filter efficiently!

# **Efficient computation – Integral images**

- Our filters are based on sums of intensities within rectangular regions.
- This can be done in constant time for arbitrary large region!
- Require precomputing integral image.

3







# **Efficient computation – Integral images**



=?

ᡪ᠋ᡰ᠋

# **Large collection of filters**



Account for all possible parameters: position, scale, type

More than 180,000 different features in a 24x24 window.



Apply Adaboost for

(i) selecting most informative features and

(ii) composing a classifier (weights+thresholds).

[Viola & Jones, CVPR 2001]

# **Efficiency issues**



Extract features at each bounding box and apply Adaboost classifier.

- Filter responses can be evaluated fast.
- But each image contains a lot of windows, that we need to classify
  - potentially great amount of computation!
- How to make detection efficient?

# **Cascade of classifiers**

• Efficient: Apply first few classifiers (fast), to reject the windows that obviously do not contain the particular category! Then reclassify the regions that survived with stronger classifiers.


### **Cascade of classifiers**

• Chain classifiers from least complex with low true-positive rejection rate to most complex ones:



#### **Viola-Jones face detector**



- Train using 5k positives and 350M negatives
- Real-time detector using 38 layers in cascade
- 6061 features in the final layer (classifier)

384x288 images, detection 15 fps on 700 MHz Intel Pentium III desktop (2001). Training time = weeks!

• [OpenCV implementation:http://sourceforge.net/projects/opencvlibrary/]

# **Detection in progress**

- The video visualizes all the "features", i.e., filter responses checked in a cascade.
- Observe the increase of cascade once close to face.



http://cvdazzle.com/

#### **Viola-Jones: results**

Guess what these correspond to!

Interesting: First two selected features.



# Make your face invisible

• Know how it works? Brake it!





Anti Face This face is unrecognizable to several state-of-art face detection algorithms.

Face Once computer vision programs detect a face, they can extract data about your emotions, age, and identity.

See how a face is detected





# Camouflage from face detection.

http://cvdazzle.com/

#### **Viola-Jones: results**





Viola, Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features", CVPR2001





## Viola-Jones (2001



Viola, Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features", CVPR2001

# **Sliding windows: Summary**

- Strengths:
  - Simple to implement
  - Can deal with scale changes
    (e.g., by pyramid implementation)



#### • Weaknesses:

 Adding aspect change significantly increases computational complexity (bounding boxes do not share equal ratios between width and height)



# **Region proposals**

- Generate small number (~5000) of hypothesized object bounding boxes
- A potentially slow classifier may be applied to verify these ullet



After verification with a "cow" classifier

- Insight: Images are intrinsically hierarchical
- Start by over-segmentation into small regions



"Efficient graph-based image segmentation" Felzenszwalb and Huttenlocher, IJCV 2004

- Merge two most similar regions based on texture similarity and region size
- Continue until a single region remains.



• From each merged region generate a bounding box



- High recall
- Object-category agnostic!



Sande, et al., <u>Segmentation as Selective Search for Object Recognition</u>, ICCV 2011

### How to come up with features?

1. Natural coordinate systems:

For some applications, it is enough just to linearly transform the input data. PCA/LDA

2. Handcrafted nonlinear transforms:

Nonlinear transforms improve feature robustness. HOG

3. Feature selection:

Machine learning to select optimal features from a pool of several handcrafted transforms. Adaboost

4. End-to-end learning of feature transform:

Have machine learn entire feature extraction and selection pipeline.

# END-TO-END FEATURE (AND CLASSIFIER ) LEARNING

**Machine Perception** 

# **Modern representation learning**



### **Recall a simple neural network**



# Learning a simple neural network (in a nutshell)



Cost function example:

 $\epsilon(j) = (t^{(j)} - f(\boldsymbol{x}^{(j)}; \boldsymbol{w}))^2$ 

$$\epsilon(\boldsymbol{w}) = \sum \epsilon(j)$$

Find optimal parameters:

$$w_{opt} = \operatorname*{argmin}_{w} \epsilon(w)$$

Iteratively adjust the weights to reduce the cost: gradient descent

 $\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \frac{\partial \boldsymbol{\epsilon}(\boldsymbol{w})}{\partial \boldsymbol{w}}$ 

Efficient implementation: Backpropagation algorithm

### Put some structure in neural networks: CNN



#### The basic building blocks of a CNN:

- Convolutional layers
- Nonlinearity (RELU)
- Pooling layers



New building blocks emerge each year...

# **Convolutional layer**



# Nonlinear layer (e.g., RELU)

- Rectified linear unit (RELU)
- Implement nonlinear feature ullettransformations
- <sup>⁵</sup> input<sup>⁰</sup> Specific form crucial for backpropagation to • work!

output

-5





# **Pooling layer**

- Aim:
  - Increase the receptive field without significantly increasing the number of parameters.
- A popular pooling operation: max pool

#### Single depth slice

| 1 | 1 | 2 | 4 |
|---|---|---|---|
| 5 | 6 | 7 | 8 |
| 3 | 2 | 1 | 0 |
| 1 | 2 | 3 | 4 |







224x224x64



# A conceptual CNN architecture

- Architecture contains feature extraction as well as a classifier
- Learning means:
  - Learn feature extraction (convolution filter kernels)
  - Learn a classifier (e.g., a multi-layer perceptron)



# **CNNs attract a significant attention in 2012**

- The filters and biases in CNN are the parameters to be learned.
- The breakthrough came with the AlexNet (50-60 million parameters)

<sup>1</sup>Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS2012

Became possible due to HUGE labelled datasets (ImageNet )

14 million labeled images, 20K categories http://www.image-net.org/

| Model             | Top-1 | Top-5 |
|-------------------|-------|-------|
| Sparse coding [2] | 47.1% | 28.2% |
| SIFT + FVs [24]   | 45.7% | 25.7% |
| CNN               | 37.5% | 17.0% |



Image

(e.g. 32x32x3)

N filters

(e.g, 5x5x3)

....

Convolve with each filter

# **Recognition paradigm shift**



https://towardsdatascience.com/review-senet-squeeze-and-excitation-network-winner-of-ilsvrc-2017-image-classification-a887b98b2883

### **Better approaches + depth**

#### Microsoft ResNet (2015)

34-layer residual



https://adeshpande3.github. io/adeshpande3.github.io/Th e-9-Deep-Learning-Papers-You-Need-To-Know-About.html ResNet is a 152 layer network. It won ILSVRC 2015 with an incredible error rate of 3.6%

#### See more recent architectures:

Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, CVPR 2017

Sandler et al., MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018

Howard et al., Searching for MobileNetV3, ICCV 2019

# **Advances made over the years**

- Initialization techniques (He et al., ICCV 2015)
- Optimization techniques

(Adam, dropout, batch normalization, block normalization, etc.) [Krizhevsky et al. NIPS2012, loffe & Szegedy ICML2015, Wu et al. ECCV2018, ...]

• Data augmentation

(flipping, scaling, rotating images, adding noise, vary colors, etc.)

• Architectural changes

(skip connections, batchnorm, multipath nets, bottlenecks, etc.) [Szegedy et al. CVPR2015, He et al. CVPR2016, Xie et al. CVPR2017, ...]

- See COCO challenge for state-of-the-art (<u>http://cocodataset.org</u>)
- Applications to recognition, object detection, segmentation, etc.

# **Object detection by R-CNN**

Girshick et. al, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR 2014



#### **Box regression**

- Region proposal generates approximate bounding box
- The box regressor refines it





Anchor box: transformed by box regressor

# **"Slow" R-CNN**



# Why is it slow?



# **"Slow" R-CNN**



# Generalized R-CNN → Fast R-CNN



# **The Problem with Fast R-CNN**



#### **Faster R-CNN**



Slide credit: Ross Girshick<sup>72</sup>

#### Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017. Faster R-CNN with a Feature Pyramid Network


#### Mask R-CNN



### **Mask predictor**

• Per-pixel occupancy map is predicted at the regressed bounding box



Validation image with box detection shown in red



#### **Mask R-CNN application**



#### Slide credit: Ross Girshick<sup>76</sup>

#### **Human pose estimation**



- Add keypoint head (28x28x17)
- Predict one "mask" for each keypoint
- Softmax over spatial locations (encodes one keypoint per mask "prior")



## Human pose estimation



#### Human "surface" estimation



The CVPR2018 oral available here: <u>https://www.youtube.com/watch?v=Dhkd\_bAwwMc</u>

http://densepose.org/

Güler, Neverova, Kokkinos, DensePose: Dense Human Pose Estimation In The Wild, CVPR 2018

#### Human "surface" estimation



Huge effort made to come up with manual ground truth annotations!

#### 50K humans, over 5 million manually annotated correspondences.



TASK 1: Part Segmentation

input image

TASK 2: Marking Correspondences



## "Semantic" Segmentation



#### **Autonomous cars**









#### **Autonomous cars**

Yuhui Yuan, Xilin Chen, Jingdong Wang, Object-Contextual Representations for Semantic Segmentation, Arxiv (unpublished) 2019



Image

Ground Truth

Baseline



Top performers on the major autonomous cars benchmark <u>Cityscapes</u> in 2019.

#### **Autonomous boats**





Borja Bovcon, Matej Kristan, A waterobstacle separation and refinement network for unmanned surface vehicles, ICRA 2020

#### **Panoptic segmentation**

• Combines object detection and stuff segmentation



https://kharshit.github.io/blog/2019/10/18/introduction-to-panoptic-segmentation-tutorial

#### **Panoptic segmentation**

• Combines object detection and stuff segmentation



https://www.youtube.com/watch?v=j11mvFqFmfA&t=110s

## **CNN generated image descriptions**

- Use CNN for feature extraction
- Use RNNs (recurrent neural networks) for word generation
- Take a huge number of images with captions manually annotated and learn by

#### backprop

Karpathy and Li, Deep Visual-Semantic Alignments for Generating Image Descriptions, CVPR 2015



Example output of the model

## **Beyond Viola Jones (CNN face detection)**

https://paperswithcode.com/sota/face-detection-on-wider-face-hard



Deng et al., RetinaFace: Single-stage Dense Face Localisation in the Wild, Arxiv2019

Bai et al., Finding Tiny Faces in the Wild with Generative Adversarial Network, CVPR2019

#### Viola-Jones (2001) vs RetinaFace (2019)



Viola, Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features", CVPR2001

Deng et al., RetinaFace: Single-stage Dense Face Localisation in the Wild, Arxiv2019

#### **Robotic vision: Household robots**







#### Place recognition for service robots

Uršič, Tabernik, Boben, Skočaj, Leonardis, Kristan, IJRAS 2013 ; Uršič, Leonardis, Skočaj, Kristan, ICRA 2016 ; Uršič, Mandeljc, Leonardis, Kristan, ICRA 2016 Uršič, Leonardis, Skočaj, Kristan, IJRR 2017



## **Robotic vision: Household robots**

Place recognition for service robots Mandeljc, Uršič, Leonardis, Skočaj, Kristan, (ICRA 2016)





## **Automating boring tasks: Counting polyps**



#### **Facebook Face detection (CNN-based)**



### **CNNs and "human performance" fallacy**

• Adding small (but specific!) perturbations to images





#### Ostrich!

dog + perturbation

Generating "adversary" images

king penguin



=

# Over 99.6% confidence in decision!

Nguyen et al., Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images, CVPR 2015 (http://www.evolvingai.org/fooling)

#### https://karpathy.github.io/2015/03/30/breaking-convnets/

#### Not only images, 3D objects too



Vincent, J. **Google's AI thinks this turtle looks like a gun, which is a problem** https://www.theverge.com/2017/11/2/16597276/google-ai-image-attacks-adversarial-turtle-rifle-3d-printed

#### **CNN invisibility glasses**

- ANY current learning algorithm extracts features to do a classification
- Recall the Adaboost face detector







#### Identity change





#### **Cloaking device**





https://www.youtube.com/watch?v=6Xh1vuwnVhU

Sharif et al., <u>Accessorize to a Crime: Real</u> and Stealthy Attacks on State-of-the-Art Face Recognition, CCS '16

## **CNN false classification stickers**



https://techcrunch.com/2018/01/02/these-psychedelic-stickers-blow-ai-minds/

#### References

- <u>David A. Forsyth</u>, <u>Jean Ponce</u>, Computer Vision: A Modern Approach (2nd Edition), (<u>prva izdaja</u> <u>dostopna na spletu</u>)
- R. Szeliski, <u>Computer Vision: Algorithms and Applications</u>, Springer, 2011
- Viola, M. Jones, <u>Robust Real-Time Face Detection</u>, IJCV, Vol. 57(2), 2004.
- Viola-Jones Face Detector
  - C++ implementation in OpenCV [Lienhart, 2002]
    - <u>http://sourceforge.net/projects/opencvlibrary/</u>
  - Matlab wrappers:
    - <u>http://www.mathworks.com/matlabcentral/fileexchange/19912</u>
- Convolutional neural networks
  - Yan LeCun, <u>http://yann.lecun.com/</u>
  - Caffe, Torch, Tensor flow, etc.
  - Ross Girshick, The Generalized R-CNN Framework for Object Detection, ECCV2018 tutorial (link)
  - Kaiming He, Learning Deep Representations for Visual Recognition, ECCV2018 tutorial (link)